- Exercises -

1. Useful fact. For which α does the following integral converge:

(a)
$$\int_0^1 t^\alpha dt$$

(b) $\int_1^\infty t^\alpha dt$

- 2. A difference between improper integrals and integrals on a compact set Let f be the function defined on $[0, \infty[\times[0, \infty[$ by $f(x, t) = xe^{-xt}$. Show by direct computation that, for every $x \ge 0$, $G(x) = \int_0^\infty f(x, t)dt$ converges. Is the function G continuous on $\mathbb{R}_{\ge 0}$?
- 3. A not absolutely convergent integral. Show that the integral $\int_{\pi}^{\infty} \frac{\sin(t)}{t} dt$ converges (*hint:* use 13.2.7 or an integration by parts) but $\int_{\pi}^{\infty} \left| \frac{\sin(t)}{t} \right| dt$ does not converge (*hint:* for $t \in [k\pi, (k+1)\pi], \frac{1}{t} \ge \frac{1}{(k+1)\pi}$).

4. The Gauss integral. Show that $\int_{-\infty}^{\infty} e^{-t^2} dt$ converges. *Hint: use that* $t^2 e^{-t^2} \xrightarrow{t \to +\infty} 0$.

- Problems -

- 5. A difference between improper integrals and series of numbers. Let f be a function defined, continuous and integrable on $\mathbb{R}_{\geq 0}$. We assume that f is decreasing on $\mathbb{R}_{\geq 0}$. Show that f(t) tends to 0 when t tends to 0. Is it still true when f is not assumed to be decreasing?
- 6. The Gamma function. For every x > 0, we put $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.
 - (a) Show that $\Gamma(x)$ converges for every x > 0. Is the integral convergent for x = 0?
 - (b) Prove that the resulting function Γ is continuous on $\mathbb{R}_{>0}$.
 - (c) Prove that for every x > 0, we have $\Gamma(x + 1) = x\Gamma(x)$. Using this fact, explain why $\Gamma(n + 1) = n!$.
 - (d) Show that $\Gamma(\frac{1}{2}) = \int_{-\infty}^{\infty} e^{-t^2} dt$. Assuming that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, find a formula for $\Gamma(\frac{2n+1}{2})$ for every *n*.
- 7. Another difference between improper integrals and integrals on a compact set.

Let $(f_n)_n$ be a sequence of integrable functions $[0, +\infty) \to \mathbb{R}$ converging uniformly to f. Show that f need not be integrable on $[0, +\infty)$. Show that even when f is integrable, it may happen that the limit of integrals is not the integral of the limit.